

APA Annual Conference August 2019

What Your Soil & Leaves are Telling You!

Graham Lancaster BAppSc(Hons)(UNENR) (Manager/ Director EAL) graham.lancaster@scu.edu.au Web: scu.edu.au/eal

EAL Background

- EAL is an independent University research, teaching and commercial analytical laboratory.
- Founded around 1992 as self funded analytical facility now 45+ staff, \$5M/yr turnover.
- NATA and ASPAC quality assurances.
- Large range of services (water, soil, leaf, compost, biochar, hair, fertiliser, etc) 'State of the Art' equipment.

Instrumentation- ICPMS, ICPOES, Mantech pH/EC,

Southern Cross University

Instrumentation-LECO CNS/CS

Southern Cross University

New Lab (upstairs)

Specialities:

- Agricultural analysis soil, sap and leaf with emphasis on the biological farming concepts
- Acid sulfate soils, sediments and rock analysis plus input into writing the new National Guidelines
- Metal contamination assessments in soil, plant, produce, dust, water, hair, etc. – techniques mainly around ultra trace ICPMS, seaFAST saline matrix, and HPLC-ICPMS speciation analysis
- Compost, mulch, potting mix, topsoil Aus Standard analysis
- Environmental Nutrient and contamination assessments
- Options for XRD, XRF, SEM with EDAX, particle characterization capabilities, etc.

EAL with Biological Farming

- Involved with Biological farming for last 20 yrs initially with Elaine Ingham – Soil Foodweb
- Biological and carbon farming enables reduced dependence on inorganic fertilisers.
- SoilCare Inc.– Soil Health Card dig, look, smell, feel...
- Concept of VSA (Visual Soil Assessment) Agriculture as a 3 legged stool – equal dependence on Biology, Chemistry and Physics (soil structure).

Macro and Micro Nutrients

- Macro-nutrients
 - primary N, P, K secondary Ca, Mg, S
- Micro-nutrients
 - B, Cu, Fe, Cl, Mn, Mo, Zn, Si, Co, Se,
- Soil texture is amount of sand, silt, clay and organic matter- texture affects the extent that water and nutrients are retained in the soil profile
- In 'traditional agriculture' availability of nutrients dependent on pH (see graphs over page) or by providing soluble salts (ie. fertilisers)

Nutrient availability dependent on soil pH!

Nitrogen Phosphorus Potassium Calcium and Magnesium Sulphur Boron Copper and Zinc Molybdenum Iron and Managanese Aluminium **Southern Cross** University **Environmental** Analysis Laboratory

Macronutrients

Nitrogen (N)

- Essential for photosynthesis as is P and Mg. Helps plants with rapid growth, increasing seed and fruit production and improving the quality of leaf and forage crops
- N deficiency is indicated by yellowing of older leaves due to declining chlorophyll. Slow growth and stunted plants are also indicators.

Phosphorus (P)

- Effects rapid growth, encourages blooming and root growth
- Deficiencies show up in older plant tissue. Stunted plants, leaves distorted. Purple or reddish colour
- Fixing of P can make it unavailable to plants. Forms complexes with Ca, Fe, Al, Mn, clay minerals, Al and Fe oxides
- Organic matter contains 1 3 % P and makes up about 50 % of P in soil.

Southern Cross University

> Environmental Analysis Laboratory

Macronutrients (cont')

Potassium (K)

- Helps in building of protein, fruit quality and reduction of disease
- Deficiencies indicated by scorching along the leaf margins grow slowly and have small leaves.

Calcium (Ca)

• Essential part of cell walls, provides for normal transport and retention of other elements as well as strength in the plant

Magnesium (Mg)

• Helps activate plant enzymes needed for growth

Sulfur (S)

- Essential for production of protein, enzymes and vitamins
- Improves root growth, seed production, vigorous plant growth and resistance to cold
- Deficiencies of S are often induced by applications of N fertiliser

Micronutrients

Boron (B)

Copper (Cu)

Chloride (Cl)

Iron (Fe)

Manganese (Mn)

Molybdenum (Mo) Zinc (Zn) Helps in use of nutrients and regulates other nutrients

Important for reproductive growth

Aids plant metabolism

Essential for formation of Chlorophyll

Involved in breakdown of carbohydrates and nitrogen metabolism

Essential in use of nitrogen

Essential for the transformation of carbohydrates. Regulates consumption of sugars and regulates plant growth.

Soil Nutrient References

Glendinning, J. S. (2000). *Australian Soil Fertility Manual*. CSIRO Publishing, Collingwood, Australia.

Peverill, K. I., Sparrow, L. A. and Reuter, D. J. (2001). *Soil Analysis: An Interpretation Manual*. CSIRO Publishing, Collingwood, Australia.

(these are chemical based and not biological)

Southern Cross University

> Environmental Analysis Laboratory

Southern Cross University **Environmental** Analysis Laboratory

Benefits of Monitoring Soil/ Leaf

- WHY test soil?
 - Determine what nutrients are lacking?
 - Determine excessive nutrients.
 - Assess nutrient balance.
 - Relate chemistry to physical characteristics.
 - Directly target fertiliser or compost applications.
- Soil testing determines the current nutrient status of your farm soils.
- Whereas leaf testing provides indication of plant nutrient uptake nutrient cycling and access.

Complete Soil Testing

PART A - Soluble 'Morgan' Nutrients - Reams

Soluble K, Mg, Ca, S, P, Nitrate, Ammonia

PART B - As per traditional testing

Testing as pH, EC, Extractable plant available phosphorus, exchangeable Na, K, Ca, Mg and Cation Exchange Capacity and Micronutrients

PART C - 'Total' Nutrients

Total acid digestion for N, P, K, Ca, Mg, Na, C, Cu, Zn, Fe, Mn, B, Si, Mo, Co and Se

Soil Composition- XRF Analysis

Typical Soil Composition

Typical Soli Coli		
Element	Approximate Content (%)	Typical Mineral Form
Oxygen	44 - 49	Oxides of minerals
Silicon	22 - 36	SiO ₂
Aluminium	6 - 10	Al ₂ O ₃
Iron	2 - 10	Fe ₂ O ₃
Calcium	1 - 7	CaO
Carbon / LOI	0.1 - 5	Organic Matter/ Carbonates
Potassium	1.5 - 3	K ₂ O
Magnesium	0.1 - 3	MgO
Sodium	0.01 - 1	Na ₂ O
Other - Barium, Vana Nickel, Chloride, Sul	Oxides/ Salts	
Note: 1 % = 10,000		

Southern Cross University

Environmental Analysis Laboratory

Southern Cross University

> **Environmental** Analysis Laboratory

AVERAGE ABUNDANCE OF ELEMENTS

(IN PARTS PER MILLION) (10,000ppm = 1%)

			BASALT (Crusher	
ELEMENT	CRUST	GRANITE	Dust)	SHALE
0	464,000	485,000	441,000	495,000
Si	282,000	323,000	230,000	238,000
Al	81,000	77,000	84,000	92,000
Fe	54,000	27,000	86,000	47,000
Са	41,000	16,000	72,000	25,000
Na	24,000	28,000	19,000	9,000
Mg	23,000	4,000	45,000	14,000
К	21,000	32,000	8,000	25,000

Reference: Krauskopf, K, 1996. Introduction to Geochemistry, McGraw-Hill Internation.

Interpreting Results

TWO CONCEPTS

- Concept of 'general guidelines' based on soil type (Heavy, Medium, Light, Sandy) whereby 'type' determined by texture and CEC. This is based on the BCSR concept (Basic Cation Saturation Ratio).
- 'SLAN' Sufficiency Level of Available Nutrients. This concept theoretically assumes that the 'ideal guide' for sandy soil should be sufficient nutrients for all soils and crops.
- Crop specific adjustments based on above concepts.

Southern Cross University Environmental Analysis

ITEM CODE	AGRICULTURAL SOIL (PACKS)	PRICE excl. GST
RA-PACK-001	Agricultural - Albrecht/Reams Includes pH and EC (1:5 water); Available Calcium, Magnesium, Potassium, Ammonium, Nitrate, Phosphate, Sulfur; Exchangeable Sodium, Potassium, Calcium, Magnesium, Hydrogen, Aluminium, Cation Exchange Capacity; Bray I and II Phosphorus; Colwell Phosphorus; Available Micronutrients Zinc, Manganese, Iron, Copper, Boron, Silicon; Total Carbon (TC), Total Nitrogen	\$110.00
RA-PACK-002	Agricultural - Albrecht/Reams plus Totals Includes pH and EC (1:5 water); Available Calcium, Magnesium, Potassium, Ammonium, Nitrate, Phosphate, Sulfur; Exchangeable Sodium, Potassium, Calcium, Magnesium, Hydrogen, Aluminium, Cation Exchange Capacity; Bray I and II Phosphorus; Colwell Phosphorus; Available Micronutrients Zinc, Manganese, Iron, Copper, Boron, Silicon; Total Carbon (TC), Total Nitrogen (TN), TC/TN Ratio, Organic Matter; Basic Colour, Basic Texture; Total Sodium, Potassium, Calcium, Magnesium, Sulfur, Phosphorus, Silicon, Cobalt, Molybdenum, Selenium, Zinc, Manganese, Iron, Copper, Boron and Aluminium.	\$160.00
RA-PACK-003	Agricultural - Albrecht/Reams plus Totals and Heavy Metals Includes pH and EC (1:5 water); Available Calcium, Magnesium, Potassium, Ammonium, Nitrate, Phosphate, Sulfur; Exchangeable Sodium, Potassium, Calcium, Magnesium, Hydrogen, Aluminium, Cation Exchange Capacity; Bray I and II Phosphorus; Colwell Phosphorus; Available Micronutrients Zinc, Manganese, Iron, Copper, Boron, Silicon; Total Carbon (TC), Total Nitrogen (TN), TC/TN Ratio, Organic Matter; Basic Colour, Basic Texture; Total Sodium, Potassium, Calcium, Magnesium, Sulfur, Phosphorus, Silicon, Cobalt, Molybdenum, Selenium, Zinc, Manganese, Iron, Copper, Boron and Aluminium; Heavy Metals Silver, Arsenic, Lead, Chromium, Nickel, Cadmium, Mercury.	<mark>\$180.00</mark>

EAL Routine Ag Soil Test

Table part 1 of 4 - Soluble Reams Nutrients

Table part 1 of 4 - Soluble F	Reams Nutrients			E	AL An La	vironmental alysis ooratory
		Sample 1	Heavy Soil	Medium Soil	Light Soil	Sandy Soil
	Sample ID:	1- Soil				
	Crop:	Pecans				
	Client:		Clay	Clay Loam	Loam	Loamy Sand
Parameter	Method reference	H8954/1	Indic	ative guidelines ·	refer to Notes 6	and 8
Soluble Calcium (mg/kg)		1419	1150	750	375	175
Soluble Magnesium (mg/kg)	ttiphouse C10, Margan 1	474	160	105	60	25
Soluble Potassium (mg/kg)	Milliouse STO-Molgan i	92	113	75	60	50
Soluble Phosphorus (mg/kg)		4.4	15	12	10	5.0
	**Rayment & Lyons 2011 - 9E2 (Bray 1)	26	45 ^{note 8}	30 ^{note 8}	24 ^{note 8}	20 ^{note 8}
Phosphorus (mg/kg P)	**Rayment & Lyons 2011 - 9B2 (Colwell)	168	80	50	45	35
	**Inhouse S3A (Bray 2)	82	90 ^{note 8}	60 ^{note 8}	48 ^{note 8}	40 ^{note 8}
Nitrate Nitrogen (mg/kg N)		7.5	15	13	10	10
Ammonium Nitrogen (mg/kg N)	**Inhouse S37 (KCI)	2.3	20	18	15	12
Sulfur (mg/kg S)		9.1	10.0	8.0	8.0	7.0
pH	Rayment & Lyons 2011 - 4A1 (1:5 Water)	6.35	6.5	6.5	6.3	6.3
Electrical Conductivity (dS/m)	Rayment & Lyons 2011 - 3A1 (1:5 Water)	0.056	0.200	0.150	0.120	0.100
Estimated Organic Matter (% OM)	**Calculation: Total Carbon x 1.75	5.7	> 5.5	>4.5	> 3.5	> 2.5

Southern Cross University

Table part 2 of 4 - Exchangeable Cations

Southern Cross University

				Clay	Clay Loam	Loam	Loamy Sand
	(cmol ₊ /kg)		15.82	15.6	10.8	5.0	1.9
Exchangeable Calcium	(kg/ha)		7100	7000	4816	2240	840
	(mg/kg)		3170	3125	2150	1000	375
	(cmol₊/kg)		6.64	2.4	1.7	1.2	0.60
Exchangeable Magnesium	(kg/ha)		1809	650	448	325	168
	(mg/kg)	Rayment & Lyons 2011 - 15D3	807	290	200	145	75
	(cmol₊/kg)	(Ammonium Acetate)	0.59	0.60	0.50	0.40	0.30
Exchangeable Potassium	(kg/ha)		514	526	426	336	224
	(mg/kg)		229	235	190	150	100
	(cmol₊/kg)		0.18	0.3	0.26	0.22	0.11
Exchangeable Sodium	(kg/ha)		93	155	134	113	57
	(mg/kg)		42	69	60	51	25
	(cmol₊/kg)		0.01	0.6	0.5	0.4	0.2
Exchangeable Aluminium	(kg/ha)	**Inhouse S37 (KCl)	2	121	101	73	30
	(mg/kg)		<1	54	45	32	14
	(cmol₊/kg)	ttDayment & Lyong 2011 1501	0.02	0.6	0.5	0.4	0.2
Exchangeable Hydrogen	(kg/ha)	(Acidity Titration)	<1	13	11	8	3
	(mg/kg)		<1	6	5	4	2
Effective Cation Exchange Cap	acity	**Calculation:	22.27	20.1	14.2	7.0	2.2
(ECEC) (cmol ₊ /kg)		Sum of Ca,Mg,K,Na,Al,H (cmol₊/kg)	23.21	20.1	14.5	1.0	5.5
Calcium (%)			68.0	77.6	75.7	65.6	57.4
Magnesium (%)			28.6	11.9	11.9	15.7	18.1
Potassium (%)		**Base Saturation Calculations -	2.5	3.0	3.5	5.2	9.1
Sodium - ESP (%)		Cation cmol₊/kg / ECEC x 100	0.8	1.5	1.8	2.9	3.3
Aluminium (%)			0.0	6.0	71	10.5	12.1
Hydrogen			0.1	0.0	7.1	10.5	12.1
Calcium/Magnesium Ratio		**Calculation: Calcium / Magnesium (cmol₊/kg)	2.4	6.5	6.4	4.2	3.2

Table part 3 of 4 - Micronutrients, miscellaneous

Southern Cross University

> **Environmental** Analysis Laboratory

			Clay	Clay Loam	Loam	Loamy San
Zinc (mg/kg)		3.8	6.0	5.0	4.0	3.0
Manganese (mg/kg)	Rayment & Lyons 2011 - 12A1 (DTPA)	15	25	22	18	15
Iron (mg/kg)		283	25	22	18	15
Copper (mg/kg)	1.9		2.4	2.0	1.6	1.2
Boron (mg/kg)	**Rayment & Lyons 2011 - 12C2 (Hot CaCl ₂)	0.64	2.0	1.7	1.4	1.0
Silicon (mg/kg Si)	**Inhouse S11 (Hot CaCl2)	84	50	45	40	35
Total Carbon (%)	Inhouse S4a (LECO Trumac Analyser)	3.25	> 3.1	> 2.6	> 2.0	> 1.4
Total Nitrogen (%)	finiouse 34a (LECO fiunac Analyser)	0.24	> 0.30	> 0.25	> 0.20	> 0.15
Carbon/Nitrogen Ratio	**Calculation: Total Carbon/Total Nitrogen	13.8	10-12	10-12	10-12	10-12
Basic Texture	**Inhouse \$65	Loam				
Basic Colour		Brownish				
Chloride Estimate (equiv. mg/kg)	**Calculation: Electrical Conductivity x 640	36				

Table part 4 of 4 – Totals (RA-PACK-002)– Contaminants (RA-PACK-003)

		Clay	Clay Loam	Loam	Loamy Sand		
Total Calcium (mg/kg)		1000–10 000 C					
Total Magnesium (mg/kg)			500-50	000 Mg			
Total Potassium (mg/kg)			200-2	000 K			
Total Sodium (mg/kg)			100-5	00 Na			
Total Sulfur (mg/kg)			100-1	000 S			
Total Phosphorus (mg/kg)			400-1	500 P			
Total Zinc (mg/kg)			20-5	i0 Zn			
Total Manganese (mg/kg)			200-20	000 Mn			
Total Iron (mg/kg)		1000–50 000 Fe					
Total Copper (mg/kg)		20–50 Cu					
Total Boron (mg/kg)		2–50 B					
Total Silicon (mg/kg)	Poyment & Lyone 2011	1000–3000 Si					
Total Aluminium (mg/kg)	17C1 Aqua Regia	2000–50 000 Al					
Total Molybdenum (mg/kg)		0.5-3.0 Mo					
Total Cobalt (mg/kg)		5–50 Co					
Total Selenium (mg/kg)		0.1–2.0 Se					
Total Cadmium (mg/kg)		<1 Cd					
Total Lead (mg/kg)		2–200 Pb					
Total Arsenic (mg/kg)		1–50 As					
Total Chromium (mg/kg)			5-10	00 Cr			
Total Nickel (mg/kg)							
Total Mercury (mg/kg)		2 Hg					
Total Silver (mg/kg)							

Southern Cross University

EALL Environmental Analysis Laboratory

EAL Soil Testing Notes

- 1. All results presented as a 40°C oven dried weight. Soil sieved and lightly crushed to <2 mm
- 2. Methods from Rayment and Lyons, 2011. Soil Chemical Methods
- 3. Soluble Salts included in Exchangeable Cations NO PRE-WASH
- 4. 'Morgan 1 Extract' adapted from 'Science in Agriculture', 'Non-Toxic Farming' and Lamonte Soil Handbook.
- 5. Guidelines for phosphorus have been reduced for Australian soils
- 6. Indicative guidelines are based on 'Albrecht' and 'Reams' concepts
- 7. Total Acid Extractable Nutrients indicate a store of nutrients
- 8. Contaminant Guides based on 'Residential with gardens and accessible soil including childrens daycare centres,

preschools, primary schools, town houses or villas' (NSW EPA 1998).

9. Information relating to testing colour codes is available on Sheet 2 - "Understanding you soil results"

Calculations

- 1. For conductivity 1 dS/m = 1 mS/cm = 1000 μ S/cm
- 2. 1 cmol⁺/Kg = 1 meq/100g; 1 Lb/Acre = 2 ppm (parts per million); kg/ha = 2.24 x ppm; mg/kg = ppm
- 3. Conversions for 1 cmol+/Kg = 230 mg/Kg Sodium, 390 mg/Kg Potassium, 122 mg/Kg Magnesium, 200 mg/Kg Calcium
- 4. Organic Matter = %C x 1.75
- 5. Chloride Estimate = EC x 640 (most likely over-estimate)
- 6. ECEC = sum of the exchangeable cations $cmol^+/Kg$
- 7. Base saturation calculations = (cation cmol+/Kg) /ECEC x 100
- 8. Ca / Mg ratio from the exchangeable $\mbox{cmol}^+\mbox{/Kg}$ results

Understanding your EAL soil results
Soil Acidity - Is the water pH > 6.5 or CaCl ₂ pH > 5.5 - hence no major problem. > 7 pH indicates alkaline soil. Soil with pH below 4.5 often has high kg/ha
exchangeable hydrogen and aluminium (and likely high % exchangeable H and Al).
Cation Exchange Capacity - Using the ECEC or CEC is the soil heavy, medium, light or sandy? In particular, compare the exchangeable Calcium and
Potassium in kg/ha to suggested guidelines.
Soil Salinity - Is the electrical conductivity (EC) above texture guidelines (ie. > 0.2dS/m heavy soil) - hence indicates possible salinity issue. If the
Exchangeable Sodium Percentage or % Exchangeable Sodium > 5% then possible salt issue. With high EC the chloride is also likely to be elevated.
Ca/Mg Ratio - Above 5 indicates good soil structure. Ratio 1 – 5 suggests addition of calcium to assist soil structure. Ratio <1 (ie. far higher magnesium)
often indicates high clay soil and possibly a sub-soil. Compaction and poor water infiltration is a likely indication of the cation imbalance.
Organic Matter - Refer to guidelines - >5.5% indicates good organic carbon and organic matter in the soil. Total Carbon to Total Nitrogen ratio should be
around 12:1 – If higher then suggests depletion of organic nitrogen.
Phosphorus - Are the levels of Bray I (plant available)/Bray II (exchangeable P) below or above the guidelines. At, above or near guidelines suggests no
need for P addition.
Solubles - Nitrate, ammonium and sulfur – compare to guidelines for soil type. Leachable nutrients hence may be further down soil profile.
Micronutrients - Plant available Iron, Manganese, Copper and Zinc – compare to guidelines to assess if relatively low or high. Iron and manganese availability
is significantly influenced by soil pH (acid soils often have very high soluble iron). Leaf testing is ideal for confirming potential issues with micronutrients.
Boron - A micronutrient extracted as plant available – compare to guidelines but be aware boron is very leachable and could be elevated down the soil profile.
PBI (Phosphorus Buffer Index- no units) - The higher the value up to 1000 the more absorptive the soil is to P hence low PBI soil has limited ability to tie up applied P.
Acid Extractable Nutrients - If total available nutrients were analysed then use numbers as a guide to compare to assess store of nutrients.

SOIL TEST RESULTS

	Client: Crop: Sample ID:	Pecan Pecan			CARBON SYSTEM AGRON	I S DMY	Job No: No of Samp Date Suppl Supplied by	oles: ied: /:	(91348 2	South Univer	Enviro Analy: Labor
		Unit	Results	Desired Level		11.00						
	pH (Water)	Unit	6.44	6.40	Deficient	L	Accept	able	High	Excessive		
	Organic Matter (OM)	%	5.9	4 - 6	ън	-	_	l l				
	Total Carbon	%	3.36	2.2 - 3.2								
	Total Nitrogen	%	0.28	>0.25								
	Carbon : Nitrogen Ratio	Unit	12.2	10-12	TC							
	Effective Cation Exchange			947 - 9477-94 1	ECEC							
	Capacity (ECEC)	cmol+/Kg	12.3	12.16	FC							
	Total Exchange Canacity (TEC)	cmol+/Ka	13.5	12-10								
	. cur Exchange Supucity (TES)											
	Electrical Conductivity (EC 1:5)	dS/m	0.064	0.200	Na							
	Aluminium	mg/kg	5	< <mark>1</mark> 5	CI							
	Sodium	%	0.6	2.20	Nitrate	_	(
	Chloride Estimate	mg/kg	41	<200								
	Actual Chloride	mg/kg	N/T	<200	Ammonium							
	Total Nitrogen	%	0.28	>0.25	P - (M1)							
	Nitrogen - Nitrate	mg/kg	9	12.3	D. Provid		-					
-	Nitrogen - Ammonium	mg/kg	3 N/T	18								
	Phosphorus - Brav 1	ma/ka	34	30	P - Colwell							
	Phosphorus - Colwell	mg/kg	113	50	P - Brav2							
	Phosphorus - Bray 2	mg/kg	96	59								
	Total Phosphorus	mg/kg	N/T	400 - 1,500	S	1						
	Potassium	mg/kg	229	197	Ca							
	Sulphur	mg/kg	8.3	20	0- (111)		_					
	Morgan 1 Extract (M1)				Ca (M1)							
	Calcium	mg/kg	997	725	Mg	10.						
	Magnesium	mg/kg	180	197	Ma (M1)		82					
	Potassium	mg/kg	127	74								
	Phosphorus	mg/kg	1.3	12	К							

Environmental Analysis Laboratory

			mg/kg	kg/Ha
	50	Desired	2073	4656
	Calcium	Found	1862	4171
	· · · · · · · · · · · · · · · · · · ·	Deficit	111 8	485
6	47.	Desired	196	441
ü	Magnesium	Found	280	628
atic	****	Deficit	57	0
C		Desired	197	442
	Potassium	Found	229	512
	201	Deficit		0
		Desired	59	133
	Sodium	Found	18	40
8		Deficit		93
52	Zinc	mg/kg	8.8	4.9
	Manganese	mg/kg	16.4	58
S	Iron	mg/kg	283	50 - 400
nen	Copper	mg/kg	3.34	1.97
Eler	Boron	mg/kg	0.95	1.68
ace	Silicon	mg/kg	50	45
F	Molybdenum	mg/kg	N/T	0.8 - 2.0
	Cobalt	mg/kg	N/T	2.5 - 10
	Selenium	mg/kg	N/T	0.5 - 2.0
	Calcium & Magnesium RATIO		4.0	5.6
ion	Calcium	% Ca	68.7	73
turat	Magnesium	% Mg	17	13
Sat	Potassium	% K	4.3	4
Base	Sodium (ESP)	% Na	0.6	2.2
3%	Aluminium	% AI	0.4	<2
	Hydrogen	% H	9.0	9.0

FERTI-TECH

5 YOOKSON DRIVE PICTON WA 6230

PH (08) 9725 6877 EMAIL: info@fertitech.com

Results Checked By: Kris Saville Senior Agricultural Analyst

© (FERTI-TECH) All Rights Reserved. It is illegal to use, create, reproduce or copy versions of Ferti-Tech reports.

Southern Cross University **Environmental** Analysis Laboratory

Environmental Issues?

- Healthy soils function to:
 - Increase plant health and productivity
 - Sustain biological activity
 - Store and cycle water and nutrients
 - Decompose organic matter
 - Inactivate (bind) toxic compounds
 - Suppress pathogens
 - > Protect water quality and enhance catchment health
- We want our soils healthy and balanced with nutrients -A balance exists between optimum soil nutrients and nutrient runoff (ie. waste and environmental pollution)

Plant Leaf Testing

- Sample collection most important often last seasons growth, 3rd whirl back (refer guide)
- Total Acid digest hence 'TOTAL ELEMENT'
- Reproducibility between labs generally very good
- Bias if samples are collected after foliar application (with no leaf washing).
- Total analysis of N, P, K, Ca, Mg, Na, S, C, Fe, Mn, Cu, Zn, B, Mo, Co, Si)

EAL Plant Leaf Testing Suite

PA-PACK-001 Plant Testing Includes Total Nitrogen (TN), Total Carbon (TC), Total Sulfur (TS); Sodium, Potassium, Calcium, Magnesium, Phosphorus, Silicon, Cobalt, Molybdenum, Zinc, Manganese, Iron, Copper, Boron.

Southern Cross University **Environmental** Analysis Laboratory \$50.00

EAL Plant Leaf Sampling Guide

- Paper bags are best for leaf sample collection.
- We can analyse a single leaf but a couple hundred grams best the lab 40°C dries and grinds this mass.
- If crop problems: collection of leaves from problem plants and comparison with leaves collected from good plants is an easy solution to locating deficiencies/ toxicities.
- Reference for sample collection and nutrient guide:
 - Reuter D.J. & Robinson J.B. 1986 Plant Analysis An Interpretation Manual. Inkata Press.
 - Bryson, Mills, Sasseville, Joes and Barker, 2014. Plant Analysis Manual III, MicroMacro Publishing, ASPAC.

Plant Analysis Handbook III

A Guide to Sampling, Preparation, Analysis and Interpretation for Agronomic and Horticultural Crops

Gretchen M. Bryson Harry A. Mills David N. Sasseville J. Benton Jones, Jr. Allen V. Barker

Southern Cross University **Environmental** Analysis Laboratory E,

PLANT TISSUE ANAL	YSIS	REPORT			
1 samples supplied by AXXXX					
Analysis requested by XXX					
			Sample 1	Sufficier	ncy Range
		Sample ID:	Pecan Leaf		, ,
		(IGNORE/HIDE)	CUDEROW		
		Crop:	Pecan Leaf	PE	CAN
		Season:		56-84 days afte	r terminal bud set
		Plant Part:		25 leaflet pairs	from new growth
		Client:			
Parameter		Method reference	i1149	Lower	Upper
Nitrogen (%)		LECO Trumac Analyser - Inhouse S4a	2.37	1.70	1.90
Phosphorus (%)		Nitric Acid digest - APHA 3125 ICPMS	0.28	0.15	0.20
Potassium (%)		Nitric Acid digest - APHA 3125 ICPMS	0.86	1.25	1.50
Sulfur (%)		LECO Trumac Analyser - Inhouse S4a	0.21	0.18	0.30
Carbon (%)		LECO Trumac Analyser - Inhouse S4a	46.5		
Magnesium (%)		Nitric Acid digest - APHA 3125 ICPMS	0.52	0.35	0.75
Sodium (%)		Nitric Acid digest - APHA 3125 ICPMS	0.06		
Copper (mg/kg)		Nitric Acid digest - APHA 3125 ICPMS	32	8	40
Zinc (mg/kg)		Nitric Acid digest - APHA 3125 ICPMS	275	50	100
Manganese (mg/kg)		Nitric Acid digest - APHA 3125 ICPMS	1,511	20	500
lron (mg/kg)		Nitric Acid digest - APHA 3125 ICPMS	172	50	300
Boron (mg/kg)		Nitric Acid digest - APHA 3125 ICPMS	86	50	60
Cobalt (mg/kg)		Nitric Acid digest - APHA 3125 ICPMS	3.7		
Silicon (mg/kg)		**Nitric Acid digest - APHA 3125 ICPMS	771		
Nitrogen : Sulfur Ratio			11.4		
Nitrogen : Phosphorus Ratio		**Calculations	8.6	••	
Nitrogen : Potassium Ratio			2.8		
Carbon : Nitrogen Ratio			19.6		
Crude Protein (%)		**Calculation: Total Nitrogen x 6.25	14.8		

EAL Environmental Analysis Laboratory

CSIRO Plant Reference Guide V3

SCIENTIFIC	NAME	ic Carpa Illinoinensk					
COMMON	NAME		Pecan				
Courter	s Filocom	M Production profis					
PLANT PA	RT 25 leall	et pairs fri	om new growth				
SEASON	56-84 di	ays after t	erminal bud set				
DATA TYP	£	St.	ifficiency Range				
CULTIVAR	s Usep		Species only.				
Mac	ronutrients %	Mic	ronutrients ppm				
5 2	1.70 - 1.30	Fe	50 - 300				
р	0.15 - 0.20	Mn	20 - 500				
K	1.25 - 1.50	8	50 - 60				
Ca	1.00 - 1.50	Cu	8 - 40				
fvig	0.85 - 0.75	Zi	50 - 100				
5	0.18 - 0.30	Mo	0.01 - 1.0				

		University	ity						
Nutrient	Deficient	Marginal	Critical (deficiency)	Adequate	High	Toxic or Excessive	Comments		nvironm nalvsis
Pecan (Carya illi	noensis)								borator
					Sampling				
Growth stage: Shell ha	ardening to early ker	nel development (I	eb in New South Wa	ales).					
Plant part: Pairs of lea	flets from midway al	long youngest fully	expanded leaf on fru	iting wood. Take	10 leaflets from eac	h of 10 trees to	represent a planting		
How established: Con and Sparks (1978).	npiled by Cresswell ((1983) who used th	e method of Jones (1	974) in New South	Wales, see also W	eir and Cresswel	ll (1993). Other use		
N(%)	<1.7	1.7-2.4		2.5-3.0	3.1-3.9	>3.9			
P(%)		<0.12		0.12-0.3	0.3-0.4	>0.4			
(%)	<0.36	0.36-0.74		0.75-1.5	1.6-3.5	>3.5			
6(%)		<0.15		0.15-0.25	>2.5				
Ca(%)		<0.7		0.7-2.5	2.6-3.2				
v(g(%)	<0.16	0.17-0.29		0.3-0.7	0.8-0.9	>0.9			
Na(%)				<0.1	0.11-0.4				
CI(%)				<0.5	0.51-1.0				
Cu(mg/kg)		2-4		5-50	51-350		(F)		
Zn(mg/kg)	<30	30-49		50-100	101-250		(F)		
Mn(mg/kg)	<100	100-149		150-500	501-2500	>2500	(F)		
e(mg/kg)		<50		50-300			(D)		
8(mg/kg)	<6	6-19		20-50	51-650	>650			

CSIRO Plant Reference Guide V1 PECAN (*Carya illinoensis*)

Sampling

Growth stage: Shell hardening to early kernel development (February in New South Wales).

Plant part: Pairs of leaflets from midway along youngest fully expanded leaf on fruiting wood. Take 10 leaflets from each of 10 trees to represent a planting. Select leaflets from branches up to 2 m above the ground. How established Compiled by G. C Wales. Other use and Sparks (197)

	Concentration range								
Nutrient	Deficient	Marginal	Critical	Adequate	High	Taxic or Excessive			
N(%) P(%)	<1.7	1.7-2.4 <0.12		2.5-3.0 0.12-0.3	3.1-3.9 >0.3	>3.9			
K(96) S(96) Ca(96) Mg(96)	< 0.36	0.36-0.74 <0.15 <0.7 <0.3		0.75-1.5 0.15-0.25 0.7-2.5 0.3-0.7	1.6-3.5 >0.25 >2.5 >0.7	>3.5			
Cu(mg/kg)		<4		4-50	>50		(F)		
Zn(mg/kg)	<30	30-49		50-100	>250		(F)		
Mn(mg/kg)	<100	100-149		150-500	>500	>2500	(F)		
Fe(mg/kg)		<50		50-300	>300		(D)		
B(mg/kg)	<6	6-19		20-50	>50	>650			

Conclusion

- Soil testing for regenerative farming about targeting nutrient applications (ie. compost)
- Soil testing to determine stored nutrients to access biologically
- Soil guidelines based on soil type with adjustments for crop type
- Carbon is a key nutrient essential for soil health
- Leaf testing a tool to assess nutrient deficiency or toxicity
- A discounted quote will be provided to APA expire EOY

Environmental Analysis Laboratory

QUESTIONS!

